8 research outputs found

    Modelling of Multi-Frequency Microwave Backscatter and Emission of Land Surface by a Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP)

    Get PDF
    Emission and backscattering signals of land surfaces at different frequencies have distinctive responses to soil and vegetation physical states. The use of multi-frequency combined active and passive microwave signals provides complementary information to better understand and interpret the observed signals in relation to surface states and the underlying physical processes. Such a capability also improves our ability to retrieve surface parameters and states such as soil moisture, freeze-thaw dynamics and vegetation biomass and vegetation water content (VWC) for ecosystem monitoring. We present here a prototype Community Land Active Passive Microwave Radiative Transfer Modelling platform (CLAP) for simulating both backscatter (&sigma;0) and emission (TB) signals of land surfaces, in which the CLAP is backboned by an air-to-soil transition model (ATS) (accounting for surface dielectric roughness) integrated with the Advanced Integral Equation Model (AIEM) for modelling soil surface scattering, and the Tor Vergata model for modelling vegetation scattering and the interaction between vegetation and soil parts. The CLAP was used to simulate both ground-based and space-borne multi-frequency microwave measurements collected at the Maqu observatory on the eastern Tibetan plateau. The ground-based systems include a scatterometer system (1&ndash;10 GHz) and an L-band microwave radiometer. The space-borne measurements are obtained from the X-band and C-band Advanced Microwave Scanning Radiometer 2 (AMSR2) radiation observations. The impacts of different vegetation properties (i.e., structure, water and temperature dynamics) and soil conditions (i.e., different moisture and temperature profiles) on the microwave signals were investigated by CLAP simulation for understanding factors that can account for diurnal variations of the observed signals. The results show that the dynamic VWC partially accounts for the diurnal variation of the observed signal at the low frequencies (i.e., S- and L-bands), while the diurnal variation of the observed signals at high frequencies (i.e., X- and C-bands) is more due to vegetation temperature changing, which implies the necessity to first disentangle the impact of vegetation temperature for the use of high frequency microwave signals. The model derived vegetation optical depth &tau; differs in terms of frequencies and different model parameterizations, while its diurnal variation depends on the diurnal variation of VWC regardless of frequency. After normalizing &tau; at multi-frequency by wavenumber, difference is still observed among different frequencies. This indicates that &tau; is indeed frequency-dependent, and &tau; for each frequency is suggested to be applied in the retrieval of soil and vegetation parameters. Moreover, &tau; at different frequencies (e.g., X-band and L-band) cannot be simply combined for constructing accurate long time series microwave-based vegetation product. To this purpose, it is suggested to investigate the role of the leaf water potential in regulating plant water use and its impact on the normalized &tau; at multi-frequency. Overall, the CLAP is expected to improve our capability for understanding and applying current and future multi-frequency space-borne microwave systems (e.g. those from ROSE-L and CIMR) for vegetation monitoring.</p

    Intramuscular EMG versus Surface EMG of Lumbar Multifidus and Erector Spinae in Healthy Participants

    Get PDF
    Study Design: Cross-sectional design. Objective: The aim of this study was to investigate the correlation between intramuscular EMG (iEMG) and surface EMG (sEMG) from lumbar multifidus and erector spinae muscles during (submaximal) voluntary contraction tests in healthy participants. Summary of Background Data: Low back muscle function is a key component in the stability of the lumbar spine in which an important role is attributed to the lumbar multifidus (LM). Impairments in this stabilization system are held responsible for (chronic) low back pain. LM function can be measured by iEMG and sEMG; however, in earlier studies, results from iEMG and sEMG were inconsistent. Methods: Fifteen healthy adults were included. The intervention consisted of five clinical tests: resting, submaximal contraction tests of the lower back, abdominal contraction, and a biofeedback test in which LM and erector spinae (ES) activities were compared by iEMG and sEMG. Correlations were calculated with regard to original signal, co-contraction ratio, and cross-talk ratio. Correlation coefficients for each combination of iEMG and sEMG signals were calculated, to identify original signal (i.e., activity of only the targeted muscle) and possible cross-talk. Correlations >0.75 were considered as good concurrent validity. Results: The original signals of LM showed fair to high correlation coefficients (r: 0.3–0.8). Co-contraction of LM and ES was observed during all tests, but iEMG shows more variation in the correlations (r: 0.1–0.8) compared to sEMG (r: 0.3–0.8). Significant cross-talk was observed in all tests, particularly during the biofeedback test of iEMGESversus sEMGLM and iEMGLMversus sEMGES (r = 0.8). Conclusion: Surface EMG of ES and LM are no adequate representation of LM and ES activity measured by iEMG because of moderate/high cross-talk and co-contractions. Clinical tests that aim to assess LM activity do not represent isolated LM activity. This should be taken into account in future clinical studies

    Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE)

    Get PDF
    A better understanding of the water and energy cycles at climate scale in the Third Pole Environment is essential for assessing and understanding the causes of changes in the cryosphere and hydrosphere in relation to changes of plateau atmosphere in the Asian monsoon system and for predicting the possible changes in water resources in South and East Asia. This paper reports the following results: (1) A platform of in situ observation stations is briefly described for quantifying the interactions in hydrosphere-pedosphere-atmosphere-cryosphere-biosphere over the Tibetan Plateau. (2) A multiyear in situ L-Band microwave radiometry of land surface processes is used to develop a new microwave radiative transfer modeling system. This new system improves the modeling of brightness temperature in both horizontal and vertical polarization. (3) A multiyear (2001–2018) monthly terrestrial actual evapotranspiration and its spatial distribution on the Tibetan Plateau is generated using the surface energy balance system (SEBS) forced by a combination of meteorological and satellite data. (4) A comparison of four large scale soil moisture products to in situ measurements is presented. (5) The trajectory of water vapor transport in the canyon area of Southeast Tibet in different seasons is analyzed, and (6) the vertical water vapor exchange between the upper troposphere and the lower stratosphere in different seasons is presented

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE)

    No full text
    A better understanding of the water and energy cycles at climate scale in the Third Pole Environment is essential for assessing and understanding the causes of changes in the cryosphere and hydrosphere in relation to changes of plateau atmosphere in the Asian monsoon system and for predicting the possible changes in water resources in South and East Asia. This paper reports the following results: (1) A platform of in situ observation stations is briefly described for quantifying the interactions in hydrosphere-pedosphere-atmosphere-cryosphere-biosphere over the Tibetan Plateau. (2) A multiyear in situ L-Band microwave radiometry of land surface processes is used to develop a new microwave radiative transfer modeling system. This new system improves the modeling of brightness temperature in both horizontal and vertical polarization. (3) A multiyear (2001–2018) monthly terrestrial actual evapotranspiration and its spatial distribution on the Tibetan Plateau is generated using the surface energy balance system (SEBS) forced by a combination of meteorological and satellite data. (4) A comparison of four large scale soil moisture products to in situ measurements is presented. (5) The trajectory of water vapor transport in the canyon area of Southeast Tibet in different seasons is analyzed, and (6) the vertical water vapor exchange between the upper troposphere and the lower stratosphere in different seasons is presented

    Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE)

    No full text
    A better understanding of the water and energy cycles at climate scale in the Third Pole Environment is essential for assessing and understanding the causes of changes in the cryosphere and hydrosphere in relation to changes of plateau atmosphere in the Asian monsoon system and for predicting the possible changes in water resources in South and East Asia. This paper reports the following results: (1) A platform of in situ observation stations is briefly described for quantifying the interactions in hydrosphere-pedosphere-atmosphere-cryosphere-biosphere over the Tibetan Plateau. (2) A multiyear in situ L-Band microwave radiometry of land surface processes is used to develop a new microwave radiative transfer modeling system. This new system improves the modeling of brightness temperature in both horizontal and vertical polarization. (3) A multiyear (2001–2018) monthly terrestrial actual evapotranspiration and its spatial distribution on the Tibetan Plateau is generated using the surface energy balance system (SEBS) forced by a combination of meteorological and satellite data. (4) A comparison of four large scale soil moisture products to in situ measurements is presented. (5) The trajectory of water vapor transport in the canyon area of Southeast Tibet in different seasons is analyzed, and (6) the vertical water vapor exchange between the upper troposphere and the lower stratosphere in different seasons is presented

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    No full text
    corecore